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By means of a theoretical expression relating the average size of a chain and the characteristics of the 
interactions between the polymeric units, we explain the two different ways of approach to the power law 
dependence of flexible and stiff macromolecules. 
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It is known that the power law region, where the various 
macroscopic properties of polymer chains depend on 
powers of their molecular weights, is the limiting region 
of very large molecular weights. A plot of the log of the 
limiting viscosity number [-t/] of dilute solutions of 
polymers as a function of the log of their molecular weight 
M results in a graph of the form shown in Figure 1, where, 
regardless of the behaviour of smaller chains, limiting 
straight line dependences are obtained 1 15. The gradients 
of such straight lines give the critical exponents which 
are universal numbers and characterize the states at 
which the macromolecules can exist. 

A study of the large number of examples from the 
literature reveals that there are two different ways of 
approach to the power region of large molecular weights, 
as shown in Figure 1. One approach takes place from 
above, with larger values of [~] at smaller molecular 
weights than those corresponding to the straight line of 
the pure power law. The second approach takes place 
from below, with smaller values of [t/] than those of the 
power law. A more detailed study of the two different 
classes of macromolecules reveals that the polymers 
approaching from above are those with flexible chains, 
with backbones of small diameter permitting closer 
approach of the chain units and greater flexibility ~-8. 
The class of polymers approaching from below have 
more rigid chains with wider backbone diameters 9-15. 
The two different behaviours may be explained by means 
of equation (3), which is based on recent techniques of 
statistical mechanics 16. 

The analysis is based on the F lo ry -Fox  equation: 
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where q~ is a constant and M the molecular weight of the 
chain, which relates [q] and the mean end-to-end square 
distance (R25 of the chain 17. ( R  25 expresses the square 
of the linear size of the chain and can be calculated from 
molecular models of statistical thermodynamics. A 
knowledge of the dependence of ( R  25 o n  various 
molecular parameters permits the study of [t/] as a 
function of these parameters by means of equation (1). 
Such parameters are the length L of the chain which is 
proportional to M, the length I of the chain unit and the 
intensity uc of the interactions between the units of the 

chain, u~ is defined as the binary cluster integral: 

u"=½fdr[1-exp( -V(r)']~kT/j (2) 

where V(r) is the mean potential between any pair of 
chain units at the ends of the vector r and depends on 
the nature of the behaviour of the units in the 
environment of the solvent 18,19. 

Working close to the critical dimensionality d =  4 we 
have shown that first-order calculations and the 
knowledge of the fixed point value 

u, 1 - - ~ - - -  tg U e 
16 -\2~/2 ] 

to first-order in e = 4 - d  determine the critical exponents 
of the various properties to first order in e. It was found, 
for example, that to first order in u: 

= I,,/N [1 + u(ln N - 1)] 

where N=L/1 is the number of units of the chain. By 
means of the fixed point value u* =e/16,  we see that the 
critical exponent v of ~ ~ N  ~' is equal to 
v= (1/2)+ (~/16) to first order in ~ (ref. 20). We have also 
shown, from higher order calculations, that an interesting 
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Figure 1 Plots of the log of the limiting viscosity numbers [t/] v e r s u s  

the log of the molecular weight M for flexible (. - -) and stiff ( ) 
macromolecules 
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Figure 2 The dependence of ln[_f/(16u/e) 1/8] on In N based on 
equation (3). For u=e/16 the pure power law ( - - )  is obtained while 
for u larger or smaller than this characteristic value graphs approaching 
from above ( . . . )  or below ( - - - )  are obtained, respectively 

closed form can be given of the structure: 

~ = l e x p ( - u ) x / / N f  
f=(l_16u ~ )1/8 + uN '/2 (3) 

where In(N) is replaced with (2/e)(N ~/2- 1) which is its 
limit for e ~ 0 (ref. 16). This closed form, which can be 
determined from second-order calculations in u and 
verified from third-order calculations, describes the 
macroscopic behaviour of the size of the chain in a large 
range of values of u and N. It proves, first of all, the 
existence of a power law in a larger range of N and u, 
which is the region where the combination u N  ~/2 

dominates over the terms of f. It explains the existence 
of the fixed point value u*=e/16 which is that value of 
u which makes equation (3) an exact power law to first 
order e. It describes the chain under ® conditions where 
u = 0 and also describes the beginning of the shrinkage 
of the chain where u obtains small negative values. 

It is interesting that since equation (3) describes the 
size of the chain in a larger range of positive u values, it 
can also be used in studying the approach to the power 
law region in good solvents. When the constant 
1 - (16u/e) of equation (3) is positive, which means that 
u < e/16 to first order in e, a transition from above takes 
place, while for u >e/16 the transition to the power law 
takes place from below. These two kinds of behaviour 
are shown in Figure 2, where the basic function 

f = 1 - + - -  N e/2 

appears, which determines the power law dependence. 
We plot the function 

In f - ~  l n ( 7  ) 

as a function of In N which approaches the power law 
behaviour 

In f -  1 ln(~-~) ~ ~lnN16 

and does not depend on the parameter u which 
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Figure 3 Potential V(p) between the polymeric units with a hard core 
diameter d, an attractive well E and a range of attractions a 

characterizes the quality of the solvent. A quantitative 
explanation of the experimental observations can be 
pursued further by calculating ue in terms of characteristic 
molecular parameters. Using the hard core potential V(p) 
(p = IrJ) with an attractive well shown in Figure 3 we can 
calculate: 

u¢=~ rcd3 exp(~)+~ rca3[1-exp(~) 1 (4) 

which shows the dependence of u c on the hard core 
diameter d, on the attractive energy E and the 
temperature T, and on the range a of the attractions. 
With increasing d, u certainly increases and the behaviour 
of the linear size ~ of the chain goes from that of 
flexible chains approaching from above the power law 
to that of more rigid chains approaching from below. 
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